Biologically-Inspired
Massively-Parallel
Computation

Steve Furber
ICL Professor of Computer Engineering
The University of Manchester
Turing Centenary
Computing Machinery and Intelligence

A. M. Turing

1950

1 The Imitation Game

I propose to consider the question, “Can machines think?” This should begin with definitions of the meaning of the terms “machine” and “think.” The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous. If the meaning of the words “machine” and “think” are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, “Can
Manchester Baby (1948)
SpiNNaker CPU (2011)
63 years of progress

- **Baby:**
 - filled a medium-sized room
 - used 3.5 kW of electrical power
 - executed 700 instructions per second

- **SpiNNaker ARM968 CPU node:**
 - fills ~3.5mm² of silicon (130nm)
 - uses 40 mW of electrical power
 - executes 200,000,000 instructions per second
Energy efficiency

- Baby:
 - 5 Joules per instruction
- SpiNNaker ARM968:
 - 0.000 000 000 2 Joules per instruction

25,000,000,000 times better than Baby!

(James Prescott Joule born Salford, 1818)
Bio-inspiration

• Can massively-parallel computing resources accelerate our understanding of brain function?

• Can our growing understanding of brain function point the way to more efficient parallel, fault-tolerant computation?
Building brains

- Brains demonstrate
 - massive parallelism (10^{11} neurons)
 - massive connectivity (10^{15} synapses)
 - excellent power-efficiency
 - much better than today’s microchips
 - low-performance components (~ 100 Hz)
 - low-speed communication (~ metres/sec)
 - adaptivity – tolerant of component failure
 - autonomous learning
Neurons
- multiple inputs, single output (c.f. logic gate)
- useful across multiple scales (10^2 to 10^{11})

Brain structure
- regularity
- e.g. 6-layer cortical ‘microarchitecture’
Neural Computation

• To compute we need:
 – Processing
 – Communication
 – Storage

• Processing: abstract model
 – linear sum of weighted inputs
 • ignores non-linear processes in dendrites
 – non-linear output function
 – learn by adjusting synaptic weights

\[
\sum w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4
\]
• Leaky integrate-and-fire model
 - inputs are a series of spikes
 - total input is a weighted sum of the spikes
 - neuron activation is the input with a “leaky” decay
 - when activation exceeds threshold, output fires
 - habituation, refractory period, …?

\[
\begin{align*}
 x_i &= \sum_k \delta(t - t_{ik}) \\
 I &= \sum_i w_i x_i \\
 \dot{A} &= -\frac{A}{\tau_A} + I \\
 \text{if } A > \vartheta_A \text{ fire} \\
 \& \text{ set } A = 0
\end{align*}
\]
• Izhikevich model
 – two variables, one fast, one slow:

\[
\begin{align*}
\dot{v} &= 0.04v^2 + 5v + 140 - u + I \\
\dot{u} &= a \cdot (bv - u)
\end{align*}
\]

 – neuron fires when \(v > 30 \); then:

\[
\begin{align*}
v &= c \\
u &= u + d
\end{align*}
\]

 – a, b, c & d select behaviour

(www.izhikevich.com)
• Spikes
 – biological neurons communicate principally via ‘spike’ events
 – asynchronous
 – information is only:
 • which neuron fires, and
 • when it fires
 – ‘Address Event’ Representation (AER)
• Synaptic weights
 – stable over long periods of time
 • with diverse decay properties?
 – adaptive, with diverse rules
 • Hebbian, anti-Hebbian, LTP, LTD, ...

• Axon ‘delay lines’

• Neuron dynamics
 – multiple time constants

• Dynamic network states
The Human Brain Project

• An EU ICT Flagship project
 – headline €1B budget
 • €54M initial funding
 – 1st October 2013 to 31st March 2016
 – ~€900k to UoM
 • next 7.5 years funded under H2020
 – subject to review of ramp-up phase after 18 months
 – 80 partner institutes, 150 PIs & Cis
 • Open Call extended this
 – led by Henry Markram, EPFL
The Human Brain Project

- Research areas:
 - Neuroscience
 - neuroinformatics
 - brain simulation
 - Medicine
 - medical informatics
 - early diagnosis
 - personalized treatment
 - Future computing
 - interactive supercomputing
 - neuromorphic computing
SpiNNaker project

- A million mobile phone processors in one computer
- Able to model about 1% of the human brain...
- ...or 10 mice!
Design principles

- **Virtualised topology**
 - physical and logical connectivity are decoupled
- **Bounded asynchrony**
 - time models itself
- **Energy frugality**
 - processors are free
 - the real cost of computation is energy
SpiNNaKer chip

Multi-chip packaging by UNISEM Europe
Chip resources

- Instruction memory: run-time kernel application callbacks
- Data memory: kernel state neuron states stack and heap
- Processor: neuron and synapse state computations

Router
- routing tables
- spike packet routing
- system comms.

RAM port
- synapse states
- activity logs
48-node PCB

864 cores

2,592 cores
SpiNNaker machines

20,000 cores

100,000 cores
Building the 105 machine

Wiring up the 103,680 core
SpiNNaker 10^5 Machine
Network – packets

- **Four packet types**
 - MC (multicast): source routed; carry events (spikes)
 - P2P (point-to-point): used for bootstrap, debug, monitoring, etc
 - NN (nearest neighbour): build address map, flood-fill code
 - FR (fixed route): carry 64-bit debug data to host

- **Timestamp mechanism removes errant packets**
 - which could otherwise circulate forever

```
Header (8 bits)                           Event ID (32 bits)
 T  ER  TS  0 -  P

Header (8 bits)                           Address (16+16 bits)                       Payload (32 bits)
 T  SQ  TS  1 -  P
     Dest             Srce
```
Network – MC Router

- All MC spike event packets are sent to a router
- Ternary CAM keeps router size manageable at 1024 entries (but careful network mapping also essential)
- CAM ‘hit’ yields a set of destinations for this spike event
 - automatic multicasting
- CAM ‘miss’ routes event to a ‘default’ output link

![Diagram of event ID and routing](image-url)
Topology mapping

Problem graph (circuit)

Core 10
Synapse

Node 94

Topology

Fragment of MC table

Problem graph (circuit)
Problem: represented as a network of nodes with a certain behaviour...

...abstract problem topology...

...problem topology loaded into firmware routing tables...

...compile, link...

...binary files loaded into core instruction memory...

...behaviour of each node embodied as an interrupt handler in code...

...problem is split into two parts...

Our job is to make the model behaviour reflect reality

The code says "send message" but has no control where the output message goes
Bisection performance

- 1,024 links
 - in each direction
- ~10 billion packets/s
- 10Hz mean firing rate
- 250 Gbps bisection bandwidth
SpiNNaker robot control
Conclusions

- We have come a long way in 60 years…
 - $x10^{10}$ improvement in efficiency
- We still don’t have the computer power to model the human brain
 - but we are getting there!
- Manchester is still building interesting machines…