Our Research in a Nutshell

“Our goal is to develop disruptive new computing paradigms and machines that will allow for lasting breakthroughs and open new application domains in the next 5-20 years.”

Emerging paradigms

- Algorithms
- Architectures

Emerging devices

- Memristors
- Memcapacitors
- Biomolecules
- ...
Computing with Structured vs Unstructured Substrates

Key challenges:
• precise positioning and
• low-resistance contacts

Polyaniline (PANI) conductive polymer, LANL, Wang et al.

Melosh et al., Science, 2003

Computing with Structured vs Unstructured Substrates

hard to fabricate
top-down engineered

easy to design logic, circuits, and architectures

bottom-up self-assembled
easy to fabricate

how do we compute with this mess?

Melosh et al., Science, 2003

Polyaniline (PANI) conductive polymer, LANL, Wang et al.
Computing with Structured vs Unstructured Substrates

Embracing Randomness

- Error-resiliency
- Self-Adaptivity
- Concurrency And Flexibility

Fully structured and regular fabrics

2000 2005 2010 Beyond The far beyond
What’s the next big thing in computing?
And how do we get there?

As feature-size scaling and "Moore’s Law" in CMOS circuits further slow, attention is shifting to computing by non-von Neumann, non-CMOS, and non-Boolean computing models.

Material Implication

Digital Logic Synthesis for Memristors (1)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Inputs</th>
<th>Pulse Count [10]</th>
<th>Gate count (ABC)</th>
<th>PulseCount (ABC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>exam1_d_pla</td>
<td>3</td>
<td>29</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>exam3_d_pla</td>
<td>4</td>
<td>25</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>n15M1_pla</td>
<td>5</td>
<td>30</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>n15M2_pla</td>
<td>5</td>
<td>54</td>
<td>30</td>
<td>57</td>
</tr>
<tr>
<td>n13M3_pla</td>
<td>5</td>
<td>121</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>xor5_d_pla</td>
<td>5</td>
<td>121</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>con11_pla</td>
<td>7</td>
<td>31</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>con22_pla</td>
<td>7</td>
<td>16</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>n17M1_pla</td>
<td>7</td>
<td>140</td>
<td>104</td>
<td>238</td>
</tr>
<tr>
<td>n17M2_pla</td>
<td>7</td>
<td>233</td>
<td>26</td>
<td>46</td>
</tr>
<tr>
<td>n17M3_pla</td>
<td>7</td>
<td>210</td>
<td>54</td>
<td>104</td>
</tr>
<tr>
<td>new10_d_pla</td>
<td>8</td>
<td>6</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>newtag_d_pla</td>
<td>8</td>
<td>27</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>n18M1_pla</td>
<td>8</td>
<td>212</td>
<td>109</td>
<td>351</td>
</tr>
<tr>
<td>n18M2_pla</td>
<td>8</td>
<td>330</td>
<td>32</td>
<td>47</td>
</tr>
<tr>
<td>n18M3_pla</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>n18M4_pla</td>
<td>8</td>
<td>420</td>
<td>134</td>
<td>345</td>
</tr>
<tr>
<td>n5ym_d_pla</td>
<td>9</td>
<td>420</td>
<td>410</td>
<td>1418</td>
</tr>
<tr>
<td>max6_d_pla</td>
<td>9</td>
<td>219</td>
<td>200</td>
<td>427</td>
</tr>
<tr>
<td>sao2f1_pla</td>
<td>10</td>
<td>33</td>
<td>56</td>
<td>102</td>
</tr>
<tr>
<td>sao2f2_pla</td>
<td>10</td>
<td>31</td>
<td>66</td>
<td>112</td>
</tr>
<tr>
<td>sao2f3_pla</td>
<td>10</td>
<td>22</td>
<td>152</td>
<td>380</td>
</tr>
<tr>
<td>sao2f4_pla</td>
<td>10</td>
<td>33</td>
<td>125</td>
<td>252</td>
</tr>
<tr>
<td>sym10_d_pla</td>
<td>10</td>
<td>1260</td>
<td>346</td>
<td>1172</td>
</tr>
<tr>
<td>t481_d_pla</td>
<td>16</td>
<td>320</td>
<td>441</td>
<td>1554</td>
</tr>
</tbody>
</table>

Digital Logic Synthesis for Memristors (2)

There is no general design theory on how to obtain a desired computation from intrinsic dynamics for devices that behave beyond simple Boolean switching.
Reservoir Computing / Liquid State Machines

- Fixed reservoir with “interesting” dynamics. No state needed.
- Only the output layer is trained. → Low learning complexity.
- Variation is good! → Easy to fabricate.

```
input layer
  reservoir
output layer
```

- Quantum dots
 - [Obst et al., 2013]
- Water bucket
 - [Fernando and Sojakka, 2003]
- Atomic switches
 - [Sillin et al., 2013]
- Photonics
 - [Vandoorne et al., 2011]
Reservoir Computing / Liquid State Machines

Issues and Challenges

Hierarchical and modular systems

1. Create digital building blocks, then use traditional design tools?
2. New approach?

Lack of composability
Solve large-scale real-world problems

Lack of scalability
Monolithic systems
Signal attenuation

Training
Hierarchical Networks

Hierarchical Composition of Memristive Networks for Real-Time Computing

Burger et al, Nanoarch, 2015
Hierarchical Composition of Memristive Networks for Real-Time Computing

Hierarchical composition of heterogeneous small networks outperforms monolithic memristive networks by at least 20% on waveform generation tasks.

On the NARMA-10 task, we reduce the error by up to a factor of 2 compared to homogeneous reservoirs with sigmoidal neurons.

Single memristive networks are unable to produce the correct result.

Network Topologies: Initial Steps

- **M**: number of hierarchical levels
- **n**: number of modules grouped together to constitute the modules of the next hierarchical level
Random Boolean Network Reservoir

NK Networks:

- \(N \) = number of nodes
- \(K \) = interaction between the nodes, i.e., the number of incoming links per node

![Node LUT](image)

\(N = 8, K = 3 \)

X-O Tasks

![Accuracy Chart](image)

- \(M = 4 \)
- \(M = 3 \)
- \(M = 2 \)
- \(M = 1 \) (monolithic)

Christof Teuscher www.teuscher-lab.com Portland State University

Christof Teuscher www.teuscher-lab.com Portland State University
Labyrinth Tasks

Fig. 6.1. 1-turn labyrinth

Fig. 6.2. 1-turn labyrinth

Labyrinth Tasks

Hierarchical levels

Number of modules

Hierarchical levels

M = 4 M = 3 M = 2 M = 1 (monolithic)
Deep LSM network (D-LSM)

![Diagram of Deep LSM network](image)

Fig. 4: The proposed deep LSM network. The image pixels are first converted to spike trains. Each 1st-stage LSM receives 25 spike trains which corresponds a sub-region of the input image selected by a 5×5 sliding window. As the sliding window moves to cover the entire image, each 1st-stage LSM generates 24×24 new spike trains. The pooling/sub-sampling stage is realized by 4-inputs OR gates. After multiple LSM stages and pooling stages, the extracted features enter the last LSM stage which also incorporates the final readout layer.

Wang and Li, D-LSM: Deep Liquid State Machine with Unsupervised Recurrent Reservoir Tuning, 3rd International Conference on Pattern Recognition (ICPR), December 4-8, 2016

Memcapacitive RC

![Graph and diagram of Memcapacitive RC](image)
Memcapacitive RC: MNIST

![Graph showing performance and power consumption for MNIST task.]

Fig. 4: Reservoir performance and power consumption for the MNIST task. $I = 784$, $O = 600$, $N = 2100$. The power measurements represent the average per image.

Thanks to Students and Sponsors

- **SRC Education Alliance, Undergraduate Research Opportunities (URO) Program**, Sep 2012 – Sep 2016.
- **Unified English Braille through a Powerful and Responsive eLearning Platform (UEB PREP)**, Rehabilitation Services Administration, Department of Education, Sep 1, 2014 – Aug 31, 2019. $548,483$.
- **DARPA, Sparse Adaptive Local Learning for Sensing and Analytics (SALLSA)**, May 3, 2013 – Aug 2, 2017. The project is in collaboration with the University of Michigan and Los Alamos National Laboratory. 5.69 million.
- **Inference at the Nanoscale**, National Science Foundation (NSF), Cyber-enabled Discovery and Innovation (CDI), Type II award. NSF grant no: 1028378, Sep 15, 2010 – Aug 31, 2016 (with NCE).