Automatic time sharing for area reduction

Henri Fraisse
Contributors

- Architecture group: Ilya Ganusov, Henri Fraisse

- Synthesis group: Ashish Sirasao, Elliott Delaye, Bing Tian

- CTO Labs: Alireza Kaviani
Agenda

- Introduction
- Design transformations
- Flow changes
- Experimental data
- Conclusion
Making the best use of the FPGA

- Channel Filter
- Interpolate
- Mixer

```
1
2
3
4
```

Low Sample Rate
eg: 200 MHz

High Sample Rate
(368 or 491 MHz)

… but DSP48E can run at 500MHz
Making the best use of the FPGA

MultiChannel Implementation

1. Channel Filter → Interpolate → Mixer

2. Channel Filter → Interpolate → Mixer

3. Channel Filter → Interpolate → Mixer

4. Channel Filter → Interpolate → Mixer

Higher Sample Rate

400 MHz

High Sample Rate
(368 or 491 MHz)

Requires a lot of manual design work

Solution: Automatic optimization in Vivado
Basic principles

- Share the combinational part (LUT, CARRY) of duplicated instances
 - Can dramatically improve LUT, CARRY and DSP utilization
 - Do not change significantly FF or BRAM utilization

- Perform multiple operations during one clock cycle
 - Need to operate at a higher clock frequency (typically 2X)
 - Looks very hard to achieve the same QOR but:
 - Each path contains twice as many register levels
 - Retiming and time borrowing should balance delay between register levels
Timing optimizations

Retiming: spread registers evenly

Time borrowing: delay the arrival time of clock signals on some registers
Overview of design transformations

A

B

C

Combinational (LUT, CARRY)

Switch every half clock cycle

Sequential (FF, BRAM)

Alignment registers
Design transformations
External module transformations

1. Select one duplicate
2. Add multiplexers to the inputs
3. Add alignment registers for outputs
4. Create clock generator (MMCM)
5. Create clock follower (CF)
Internal module transformations

For LUTRAM, BLOCKRAM, SRL, or any basic sequential module: duplicate, add multiplexer on output, invert one clock

Better solution for register (no clock enable) register with clock enable
Related academic work

- **Resource sharing is a classic HLS optimization**
 - Only applied for operations scheduled on separate cycles
 - Only applied for single functional units (ex: DSP)

- **A closer related academic work is Multi-pumping**
 - Typically applied as HLS optimization
 - Only applied for single functional units (ex: DSP)

- **C-slow retiming (Berkeley)**
 - Replace each register with a sequence of N registers (typically 2) and apply retiming
 - Alter the behavior of the design
 - Improves throughput but adds latency
 - **Do not improve area** (rather increase area by adding registers)
Flow changes
Flow options for time sharing

Synthesis

1. RTL Elaboration
2. RTL Partition
3. Cross Boundary Optimization
4. Area Optimization
5. Timing Optimization
6. Technology Mapping

Early time sharing
- Dissolve small hierarchies
- BRAM, LUTRAM, DSP inference
- Constant propagation
- First timing estimate
- Late time sharing
How to take advantage of both options?

- **Step 1: Annotate the candidates for time sharing early**
 - Prevent optimizations crossing the boundaries of annotated instances

- **Step 2: Apply time sharing later on annotated instances**
 - Filter timing critical instances

- **Step 3: Re-apply cross boundary optimizations**
 - Focus specifically on annotated instances
Experimental results
Results for the early time sharing flow

Average CLB reduction 17%
Average LUT reduction 19%

LUT count CLB count

resource utilization %

Designs
Results for the late time sharing flow

Average CLB reduction 14%
Average LUT reduction 15%

LUT count CLB count

resource utilization %

Designs
Impact on Maximal Frequency

Maximal frequency evolution

- Baseline
- Initial time sharing
- Optimized time sharing
- 2X Baseline

Designs

Maximal Frequency

Design 1
Design 2
Design 3
Design 4
Design 5
Design 6
Conclusion and future works
Concluding Remarks

- Implemented automatic time sharing in Vivado
- Demonstrated the potential for area reduction on a representative set of designs
- Investigated the QOR impact on few selected designs
Thank you!