Using Formal Techniques for Design for Verifiability

Rolf Drechsler

University of Bremen
DFKI GmbH
Germany

drechsler@uni-bremen.de
Verification

- It is important
 - Trust me!

- Very powerful tools in the market
 - Formal verification

- For formal tools: little understanding of behavior
How does verification work?

- Circuit is designed

- Handed to verification tool
 - Simulation/emulation
 - Formal techniques
How does verification work?

- Circuit is designed
- Handed to verification tool
 - Simulation/emulation
 - Formal techniques
What would we like to have?

- Prediction
 - Run time
 - Memory requirement
- Polynomial

Questions:
- Can this work for any/all circuits?
- How do these circuits look like?
Example: multiplier verification

- Formal Verification of Integer Multipliers by Combining Gröbner Basis with Logic Reduction (Sayed-Ahmed et al., DATE, 2016)
 - 128-bit multiplier verified
- Polynomial verification of multipliers (Keim et al., Formal Methods in System Design, 2003)
 - Based on *BMDs (difficult DD type)
Design for verifiability

• **Goal:** Design circuits such that
 - *Formally* verifiable
 - *Polynomial* bounds
Binary Decision Diagrams

- Shannon decomposition:
 \[f = \overline{x_i} \cdot f_{x_i=0} + x_i \cdot f_{x_i=1} \]
- Terminals: ‘0’, ‘1’
- Ordered and reduced BDDs
- Canonical data structure
Derive circuits from BDDs

- Synthesis of fully testable circuits from BDDs (Drechsler et al, TCAD, 2004)
- Each node is substituted by a multiplexor
- Example: \(f(x_1, x_2) = x_1 + x_2 \)
Consider Construction

- Small BDD does **not imply** small BDD during construction!
 - Otherwise: *tautology checking* would be trivial

- But, interesting to look at **BDD results**: Bern et al: Global rebuilding of OBDDs Avoiding Memory Requirement Maxima. CAV 1995
What makes verification hard?

- Similar to test generation
- Circuit structure
- Tree-like
 -> polynomial verification (e.g. by BDDs)

- But how about reconvergent paths?
Reverse engineer formal tools

- E.g.: what makes SAT solvers efficient?
 - Implication graphs
 - Learning
 - Non-chronological backtracking
 - ...

- How do these circuits look like?
Conclusions

• **Today:** very powerful formal verification tools
 – But: little understanding

• **Research goal:**
 – Designing circuits that are by construction provably formally verifiable

• Works for BDDs, but **not trivial**!

• **Future work:** extension to KFDDs, SAT, SMT,...
Using Formal Techniques for Design for Verifiability

Rolf Drechsler

University of Bremen
DFKI GmbH
Germany

drechsler@uni-bremen.de