Towards Ultra Light-weight Solutions for IMD Security

Saied Hosseini Khayat, PhD
Assistant Professor
Digital Systems Lab
Electrical Engineering Department
Ferdowsi University of Mashhad, Iran

Workshop on Security and Privacy in Implantable Medical Devices, EPFL, April 2011
Motivation

- Wireless + IMD \rightarrow Convenience - Security

Pacemaker
Cardiac defibrillator

Insecure Wireless Channel

- Eavesdropping
- Masquerading
- Denial of service

Secure Channel
standard protocols
e.g. IPSEC
Motivation

Vision

• IMD security is **vitaly important**.
 • No one buys a house, car lacking a door-lock.

• Security is expensive.
 • IMD has no room (cost, area, power) for security.

• Security can be **transparent** and **low-cost**.
 • Should not get in the way of functionality, performance.
 • Should not increase cost, power consumption.

• Protect the “**common patient**” against the “**common bad guy**.”

 Equip a normal house with a normal door-lock.
Heavy-weight security

Light-weight security
Our (Partial) Solution

• Employ a lightweight 64-bit block cipher.
 • 128-bit block ciphers too heavy
 • Stream ciphers require bit-level synchronization of sender and receiver. Hard to maintain.

• Create a lightweight protocol around cipher.
 • Existing protocols (e.g. IPSEC) too heavy

• Implement protocol in dedicated hardware.
 • Software implementation wasteful of power

• Use subthreshold logic to minimize power.
 • Goal: Minimum power for a decent level of security
Broad Taxonomy of Medical Sensors

- **Function**
 - Sensing
 - **Sense and actuate**

- **Life-time**
 - Short-term (days)
 - Medium-term (months)
 - **Long-term (years)**

- **Location**
 - On body
 - In body

- **Energy source**
 - Battery
 - Harvesting
 - Induction

- **Connectivity**
 - Wired
 - **Wireless**
 - No connection

- **Data rate**
 - Low
 - High

My Focus
IMD Requirements

• Sensing and digital signal processing (e.g. ECG)
• Actuating (e.g. defibrillation shock)
• Radio communication
• High reliability
• Minimal device size
• Small nonrechargeable battery (~5000 Joules)
• Very long operational life-time (~10 years)

→ 10-20 µW average power for the entire device!

Demands ultra low-power electronics

Any room left for crypto processing ??
Goal in the rest of this talk

• To present a lightweight protocol that protects against
 • Breach of privacy (i.e., eavesdropping)
 • Malicious control, reprogramming of IMD (i.e., masquerading)
Assumptions

• A secret key is shared between IMD and BaseStation.

• The employed block cipher is not “broken.”

• Long data blocks are segmented into 64-bit blocks.

• Each IMD has a unique ID (serial number).

• No guaranteed delivery of packets.

• No specific assumption about MAC layer.
Attack Model

- Attacker does not have:
 - Physical access to IMD
 - Physical access to Base Station
 - Secret keys

- Attacker can:
 - Listen to messages
 - Transmit fake messages
 - Save and replay messages

Above model differs from RFID and sensor network.
Lightweight Block Ciphers

- DES, DESXL, HIGHT, **PRESENT**, KATAN, AES

My favorite

- 2309 GE
- 2168 GE
- 3048 GE
- 1570 GE
 - 5 uW @ 100 KHz
- 1054 GE
- 3400 GE

Bogdanov, *et al*, 2007
PRESENT Block Cipher

Features

- Symmetric block cipher
- 64-bit block
- 80-bit key
- 31 rounds
- Simple S-P network
- 16 identical 4x4 Sboxes
- On-the-fly key schedule
- Resistance to differential and linear attacks
PRESENT Block Cipher

Resources:
MUX21: 144
XOR2: 69
DFF: 149
Sbox: 17

Vdd=0.35v, f=25KHz
~41 nW, 0.8 pJ/bit
(Simulated 0.18 um TSMC)

65nm, Vdd=0.35v, f=30 KHz
210 nW, 5.8 pJ/bit

C´edric Hocquet, et al,
JOURNAL OF CRYPTOGRAPHIC ENGINEERING, Feb 2011
Communication Modes

Receive Mode

Patient with IMD ➔ Reprogramming command 🗣️ Status Query 🕵️‍♂️
Base Station 📡

Transmit Mode

Patient with IMD ➔ Periodic telemetry data 📊 Response to query 🕵️‍♂️
Base Station 📡
Lightweight Protocol

Receive Mode

- Patient with IMD
- Reprogramming command
- Status Query
- Base Station

Registers

<table>
<thead>
<tr>
<th>IMD Serial number</th>
<th>Anti-replay counter</th>
<th>Secret Key</th>
<th>Received message</th>
<th>Sent message</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>A</td>
<td>K</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- 32 bits
- 80 bits
- 64 bits

- 32 bits
- 80 bits
- 64 bits

Secret Key

- 80 bits

Received message

- 64 bits

Sent message

- 64 bits
Lightweight Protocol

Receive Side

Validity condition: $X = X'$ if $(S = S') \text{ AND } (B' > A)$

Counter Advancement: If valid then $A = B'$

Transmit Side
Lightweight Protocol

BIT MIXER does the following:

\[
\begin{align*}
\{ B_0, B_E \} & \leftarrow \text{deInterleave}(B) \\
\{ S_H, S_L \} & \leftarrow \text{split}(S) \\
\{ X_H, X_L \} & \leftarrow \text{split}(X)
\end{align*}
\]

\[
M_1 \leftarrow \text{Interleave}(X_L, \{ S_L, B_E \}) \\
M_2 \leftarrow \text{Interleave}(X_H, \{ S_H, B_0 \})
\]

Only bit permutations
No logic gates required
Required Resources

When Tx and Rx designed as separate modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Rx</th>
<th>Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher module</td>
<td>1 Decryption</td>
<td>1 Encryption</td>
</tr>
<tr>
<td>Key register</td>
<td>80 DFF</td>
<td>80 DFF</td>
</tr>
<tr>
<td>A/B counter</td>
<td>32 DFF</td>
<td>32 DFF</td>
</tr>
<tr>
<td>S register</td>
<td>32 DFF</td>
<td>32 DFF</td>
</tr>
<tr>
<td>Data register</td>
<td>64 DFF</td>
<td>64 DFF</td>
</tr>
<tr>
<td>32-bit binary comparator</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>32-bit adder</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mux2-1</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Memory</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Power (nW)</td>
<td>~83</td>
<td>~77</td>
</tr>
</tbody>
</table>

Subkeys are generated on the fly, so no memory is needed. Otherwise 2560 bits of memory would be needed.

Sum = ~160 nW
Other Security Challenges

• **Denial of Service Attacks:**
 - **Jamming:** Adversary blocks communications by transmitting strong signal (noise).
 - **Solution:** Lightweight UWB? Lightweight Spread Spectrum?
 - **Battery drain:** Adversary keeps IMD receiver frequently busy by sending fake packets.
 - **Solution:** Energy harvesting for IMD receiver?
Conclusion

• IMD security is vitally important.

• Lightweight IMD security is feasible.

• An example protocol was presented.
Thank you.